编辑代码

#include <stdio.h>
#include <math.h>
void printxs(int xs[], int len)
{
	int i;
	i = 0;
	while (i < len)
	{
		printf("%d, ", xs[i]); i = i + 1;
	}
	printf("\n");
}

void nat(int xs[], int len)
{
	int i;
	i = 0;
	while (i < len)
	{
        xs[i] = i;
		i = i + 1;
	}
}
void evenSeq(int xs[], int len)
{
	int i;
	i = 0;
	while (i < len)
	{
        xs[i] = i * 2;
		i = i + 1;
	}
}
void oddSeq(int xs[], int len)
{
	int i;
	i = 0;
	while (i < len)
	{
        xs[i] = (i * 2) + 1;
		i = i + 1;
	}
}
void squareSeq(int xs[], int len)
{
	int i;
	i = 0;
	while (i < len)
	{
        xs[i] = i * i;
		i = i + 1;
	}
}
void sqrootSeq(int xs[], int len)
{
	// sqrt(x)
    int i;
	i = 0;
	while (i < len)
	{
        xs[i] = sqrt(i);
		i = i + 1;
	}
}

void fib(int xs[], int len)
{
//	0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 6
	int i;
	xs[0] = 0; xs[1] = 1;
	i = 2;
	while (i < len)
	{
		xs[i] = xs[i - 1] + xs[i - 2];
	}
}
void lucas(int xs[], int len)
{
	
//	卢卡斯数 (Lucas Number):
//	2 1 3 4 7 11、18、 29 47 76 123 199 322
//why the Lucas numbers are amazing is that first, it cannot be divided by 5 or 13; 
//second, it cannot be divided by a Fibonacci number except by 1,2, and 3; 
//third, it follows a 12-cycle length pattern. If you look at the given sequence above, 
//it repeats the sequence after the 12th number in the sequence.
	int i;
	xs[0] = 2; xs[1] = 1;
    i = 2;
	while (i < len)
	{
		xs[i] = xs[i - 1] + xs[i - 2];
	}
}
void pell(int xs[], int len)
{
//	佩尔数 (Pell Number):	
//	0 1 2 5 12 29 70 169 408 985 2378 5741
	int i;
	xs[0] = 0; xs[1] = 1;
    i = 2;
	while (i < len)
	{
		xs[i] = xs[i - 2] + xs[i - 1] * 2;
	}
}
void pellLucas(int xs[], int len)
{
//	佩尔 - 卢卡斯数 (Pell - Lucas Number):
//	2 2 6 14 34 82 198 478 1154 2786 6726等。
	int i;
	xs[0] = 2; xs[1] = 2;
    i = 2;
	while (i < len)
	{
		xs[i] = xs[i - 1] + xs[i - 2] * 2;
	}
}
void perrin(int xs[], int len)
{
// The Perrin sequence, on the other hand, will look like this: 
// 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158 and so on.
	int i;
	xs[0] = 3; xs[1] = 0; xs[2] = 2;
	i = 3;
	while (i < len)
	{
		xs[i] = xs[i - 2] + xs[i - 3];
	}
}
void padovan(int xs[], int len)
{
// A Padovan sequence will look this: 
// 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37 and so on.
	int i;
	xs[0] = 1; xs[1] = 1; xs[2] = 1; xs[3] = 2;
    xs[4] = 2;
	i = 5;
	while (i < len)
	{
		xs[i] = xs[i - 3] + xs[i - 4] + xs[i - 5];
	}
}
void ratioOf(int xs[], int len)
{
//	 try this on padovan and perrin sequence
//	 ratio between the consecutive terms approach a limiting value called a plastic constant. In mathematics, 
//	 a plastic constant is an irrational number and the real-valued root of the cubic equation x^3 - x - 1 = 0.
}
int sum(int xs[], int len)
{
	int i, res; 
	i = 0; res = 0;
	while(i < len){
        res = res + xs[i];
    }
	return res;
}
int prod(int xs[], int len)
{
	int i, res; 
	i = 0; res = 1;
	res = res * xs[i];
	return res;
	
}
float avg(int sum, int len)
{
	return (float)sum/len;
}
void reverse(int xs[], int len)
{
	int i, j, t; 
	i = 0; j = len - 1; t = 0;
	while (i <= j)
	{
        t = numbers[i];
		numbers[i] = numbers[j];
        numbers[j] = t;
	}
}

float dev(int xs[], int len)
{
	// sqrt(variance / len)
	// sqrt is in math.h
	// variance = sumOf pow(xs[i] - avg, 2)
	int i, sum; 
	float average, diff, res;
	i = 0; sum = 0;
	while (1)
	{
		
	}
	while (1)
	{
		
	}
	res = sqrt(res / len);
	return res;
}
int main()
{
	int len;
	len = 5;
	int xs[len];
	oddSeq(xs, len);
	printxs(xs, len);

	return 0;
}