#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
//寻找源节点到目的节点最短路径,并将源节点到目的节点的节点序号打印出来
#define MAX 100 // 矩阵最大容量
#define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position(Graph G, char ch)
{
int i;
for(i=0; i<G.vexnum; i++)
if(G.vexs[i]==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
static char read_char()
{
char ch;
do {
ch = getchar();
} while(!isLetter(ch));
return ch;
}
/* 创建图(自己输入)
*/
/*
Graph* create_graph()
{
char c1, c2;
int v, e;
int i, j, weight, p1, p2;
Graph* pG;
// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i] = read_char();
}
// 1. 初始化"边"的权值
for (i = 0; i < pG->vexnum; i++)
{
for (j = 0; j < pG->vexnum; j++)
{
if (i==j)
pG->matrix[i][j] = 0;
else
pG->matrix[i][j] = INF;
}
}
// 2. 初始化"边"的权值: 根据用户的输入进行初始化
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点,结束顶点,权值
printf("edge(%d):", i);
c1 = read_char();
c2 = read_char();
scanf("%d", &weight);
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
if (p1==-1 || p2==-1)
{
printf("input error: invalid edge!\n");
free(pG);
return NULL;
}
pG->matrix[p1][p2] = weight;
pG->matrix[p2][p1] = weight;
}
return pG;
}
*/
/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//int vexs[] = {1,2,3,4,5,6,7};
int matrix[][9] = {
/* 0 1 2 3 4 5 6 */
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ { 0, 12, INF, 5, INF, 20, 14},
/*B*/ { 12, 0, 10, INF, INF, 7, INF},
/*C*/ { INF, 10, 0, 3, INF, 6, INF},
/*D*/ { 5, INF, 3, 0, 9, INF, INF},
/*E*/ { INF, INF, INF, 9, 0, 2, 8},
/*F*/ { 20, 7, 6, INF, 2, 0, 9},
/*G*/ { 14, INF, INF, INF, 8, 9, 0}};
int vlen = LENGTH(vexs);
int i, j;
Graph* pG;
// 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"
pG->vexnum = vlen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
pG->vexs[i] = vexs[i];
// 初始化"边"
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
pG->matrix[i][j] = matrix[i][j];
// 统计边的数目
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
if (i!=j && pG->matrix[i][j]!=INF)
pG->edgnum++;
pG->edgnum /= 2;
return pG;
}
/* 返回顶点v的第一个邻接顶点的索引,失败则返回-1
*/
static int first_vertex(Graph G, int v)
{
int i;
if (v<0 || v>(G.vexnum-1))
return -1;
for (i = 0; i < G.vexnum; i++)
if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
return i;
return -1;
}
/*
* 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
*/
static int next_vertix(Graph G, int v, int w)
{
int i;
if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1))
return -1;
for (i = w + 1; i < G.vexnum; i++)
if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
return i;
return -1;
}
/*
* 打印矩阵队列图
*/
void print_graph(Graph G)
{
int i,j;
printf("Martix Graph:\n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%10d ", G.matrix[i][j]);
printf("\n");
}
}
/*
* 获取图中的边
*/
EData* get_edges(Graph G)
{
int i,j;
int index=0;
EData *edges;
edges = (EData*)malloc(G.edgnum*sizeof(EData));
for (i=0;i < G.vexnum;i++)
{
for (j=i+1;j < G.vexnum;j++)
{
if (G.matrix[i][j]!=INF)
{
edges[index].start = G.vexs[i];
edges[index].end = G.vexs[j];
edges[index].weight = G.matrix[i][j];
index++;
}
}
}
return edges;
}
/*
* 获取i的终点
*/
int get_end(int vends[], int i)
{
while (vends[i] != 0)
i = vends[i];
return i;
}
/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int des, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
int cur;
int index;
int path[MAX];
// 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
path[i] = 0;
}
// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;
// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
printf(" 节点%c到节点%c的最短距离为:%d\n", G.vexs[vs], G.vexs[des], dist[des]);
printf("距离矩阵\n");
for (i = 0; i < G.vexnum; i++)
printf(" %2d", dist[i]);
printf("\n");
printf("前驱节点矩阵\n");
for (i = 0; i < G.vexnum; i++)
printf(" %2d", prev[i]);
printf("\n");
printf("节点矩阵\n");
for (i = 0; i < G.vexnum; i++)
printf(" %3c", G.vexs[prev[i]]);
printf("\n");
for (int i = des; i >vs; i--)
{
if (dist[des] == INF)
{
printf("顶点%c到顶点%c没有最短路径\n", G.vexs[vs], G.vexs[des]);
}
else
{
printf("顶点%c到顶点%c有长为%d的最短路径:", G.vexs[vs], G.vexs[i], dist[i]);
int cur = i, index = 0;
path[index] = cur;
while (1)
{
path[index + 1] = prev[path[index]];
if (path[index + 1] == 0)
break;
index++;
}
printf("%c->", G.vexs[vs]);
for (int j = index ; j > 0; j--)
{
printf("%c->", G.vexs[path[j]]);
}
printf("%c\n", G.vexs[path[0]]);
}
}
}
void main()
{
int prev[MAX] = {0};
int dist[MAX] = {0};
int path[MAX] = {0}; //打印路径
Graph* pG;
// 自定义"图"(输入矩阵队列)
//pG = create_graph();
// 采用已有的"图"
pG = create_example_graph();
print_graph(*pG); // 打印图
//DFSTraverse(*pG); // 深度优先遍历
//BFS(*pG); // 广度优先遍历
//prim(*pG, 0); // prim算法生成最小生成树
//kruskal(*pG); // kruskal算法生成最小生成树
// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
dijkstra(*pG, 2,6, prev, dist);
//print_path(*pG,1,6, prev, dist,path);//打印路径函数有问题
}