iris = datasets.load_iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
print(knn.predict(x_test))
print(y_test)
x = df[['最大周长','最大凹陷度']]
y = df['肿瘤性质']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.7, random_state=42)
model = GaussianNB()
model.fit(x_train, y_train)
y_test_pred = model.predict(x_test)
print( y_test_pred)
accuracy = accuracy_score(y_test_pred, y_test)
print("accuracy:"accuracy)
accuracy_score(y_test,y_test_pred)
x = df[['天气','温度','湿度']]
y = df['可否打球']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
model = GaussianNB()
model.fit(x_train, y_train)
y_test_pred = model.predict(x_test)
print("y_test_pred:", y_test_pred)
accuracy = accuracy_score(y_test, y_test_pred)
print("accuracy:", accuracy)
x = data['预估薪资']
y = data['是否会购买']
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2020)
x_train = x_train.values.reshape(-1, 1)
x_test = x_test.values.reshape(-1, 1)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(x_train, y_train)
acc = model.score(x_test, y_test)
print( acc)
y_test_pred = model.predict(x_test)
print(y_test_pred)